Our Research
Slow-release antibacterial system for otic therapeutics
Ear infections are a commonly occurring problem that can affect people of all ages. Treatment of these pathologies usually includes the administration of topical or systemic antibiotics, depending on the location of the infection. Otitis externa (OE, outer ear infections) can have various etiologies. However, bacterial infections (typically attributable to Pseudomonas aeruginosa or Staphylococcus aureus) account for approximately 98% of all cases. OE treatment regimes prescribe topical analgesics, locally acidifying solutions (2% acetic acid) and/or antibiotic eardrops. Topical antibiotic drops are preferred to their oral counterparts as the therapeutic is delivered directly to the infected tissue. Still, they require multiple daily applications over 7-10 days, and studies show that only 40% of patients who self-medicate do so appropriately with the effectiveness of the therapy increasing when someone else other than the patient applies the drops. In this context, we seek to evaluated the feasibility of a single-application slow-releasing therapeutic formulation of an antibiotic for the treatment of otitis externa. Our in vitro evaluations conducted so far, reflective of therapeutic ease of administration, formulation stability, cytocompatibility assessment, antibacterial efficacy, and formulation lifespan, indicate that our developed formulations, based on thixotropic, antibiotic releasing materials are promising for development as otic therapeutics for both human and veterinary applications.
Silk-based tissue sealant for seroma prevention
Silk-fibroin based wound healing devices
Our goal is to engineer an adhesive acellular wound healing device based on silk fibroin (SF) and hyaluronan (HA) that would be self-immobilizing and regenerative for full thickness wounds. Our preliminary data show that: (a) lyophilized foam-like SF sheets (SF foams) have skin-like feel, coloration and texture when layered on skin – suggesting that SF foams may be suitable as cutaneous healing devices; (b) the surface of SF foams is micro-porous – which may impart moisture retention properties needed for wound healing; (c) thin films of physically uncrosslinked SF have adhesive properties - suggesting that tissue adherent, self-fixing constructs may be formulated with no added chemicals or biomaterials; and (e) the cytocompatibility of SF constructs improves with the addition of HA – indicating that this parameter may be tailored for optimal wound healing and tissue compatibility.